Puerarin transport across rat nasal epithelial cells and the influence of compatibility with peoniflorin and menthol
نویسندگان
چکیده
Nose-to-brain transport can provide an excellent pathway for drugs of the central nervous system. Consequently, how to make full use of this pathway in practical applications has become a focus of drug design. However, many aspects affecting drug delivery from the nose to the brain remain unclear. This study aimed to more deeply investigate the transport of puerarin and to explore the mechanism underlying the influence of compatible drugs on puerarin permeability in a primary cell model simulating the nasal mucosa. In this research, based on rat nasal epithelial cells (RNECs) cultured in vitro and cytotoxicity assays, the bidirectional transport of puerarin across RNEC monolayers and the effect of its compatibility with peoniflorin and menthol were analyzed. The apparent permeability coefficient was <1.5×10-6 cm/s, and the efflux ratio of puerarin was <2, indicating that puerarin had poor absorption and that menthol but not peoniflorin significantly improved puerarin transport. Simultaneously, through experiments, such as immunofluorescence staining, transepithelial electrical resistance measurement, rhodamine 123 efflux evaluation, the cell membrane fluorescence recovery after photobleaching test, and ATPase activity determination, the permeability promoting mechanism of menthol was confirmed to be closely related to disruption of the tight junction protein structure, to the P-glycoprotein inhibitory effect, to increased membrane fluidity, and to the promotion of enzyme activity. These results provide reliable data on nasal administration of the studied drugs and lay the foundation for a deeper investigation of the nose-brain pathway and nasal administration.
منابع مشابه
Puerarin transport across a Calu-3 cell monolayer – an in vitro model of nasal mucosa permeability and the influence of paeoniflorin and menthol
Nasal administration is a high-potential delivery system, particularly because it can provide a pathway from the nose to the brain. The objective of this research is to characterize puerarin transport across a Calu-3 cell monolayer used as a model of the nasal mucosa and to evaluate the influence of puerarin in combination with paeoniflorin and menthol to explore the enhanced mechanism of the p...
متن کاملبررسی کیفی و کمی بیان پروتئین آکواپورین1 در شبکه کوروئید رت نژاد سویتار
Abstract Background: Choroid plexus (CP) is a branched structure made up of a single layer of epithelial cells and blood capillaries, forming the blood-CSF-barrier. The CSF (cerebrospinal fluid) is mainly produced from the CP. Aquaporin1 (AQP1), water channels that are highly expressed on the apical side of the membrane in choroid plexus, have a major role in mediating water transport across th...
متن کاملInfluence of Chemical Permeation Enhancers on the in vitro Skin Permeation of Minoxidil through Excised Rat Skin: A Mechanistic Study
Abstract: Minoxidil, a pyrimidine derivative (2, 4-diamino-6-piperidinopyrimidine-3-oxide) is the only topical medical treatment with proven efficacy for the treatment of Androgenetic alopecia that shown low skin penetration and bioavailability. The main aim of this research was to investigate the effect of some permeation enhancers on the in vitro skin permeability of minoxidil . Minoxid...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017